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The uncertainty of measurement contains the estimated geometrical errors of the measuring machine. 
For some typical measuring tasks the effects of the errors of indication for size measurements on the 
measurands are used to estimate the task specific geometrical errors. Additionally, the influence of 
temperature has to be taken into account as a very important further uncertainty component. 
 
 
Introduction 
 
In every decision concerning the conformance of products based on measurements, their uncertainties 
have to be considered [1]. The uncertainty characterizes the dispersion of the values that could be 
attributed to the measurand. There are two fundamental methods of uncertainty assessment [2]. With 
the first method (A) measurements are repeated several times, with the second method (B) know data 
like standard resp. expanded uncertainties, maximum permissible errors or distribution functions are 
used. Method A is more expensive and requires in coordinate measurement repeated measurements 
of the same workpiece in various positions. Therefore method B is often prefered, if the corresponding 
data may be gathered with reasonable expense. Determining the relationships between the deviations 
of the measurands and the error of indication for size measurements for typical measurement tasks, 
the uncertainty components of the geometrical errors of the CMM may be estimated in a simple 
manner according to the method B. 
The described method is one possible alternative to other ones, which are currently under discussion 
like the “virtual coordinate measuring machine” [3] or “uncertainty assessment by simulation” [4]. 
 
 
Error of indication for size measurement 
 
The most well known geometrical deviation of coordinate masuring machines is the error of indication 
for size measurement. Their maximum permissible errors are used to compare the accuracy of various 
machines. In acceptance tests the maximum permissible errors stated by the manufacturer of the 
CMM are not allowed to be exceeded, if the stated environmental conditions are retained. In 
reverification tests, the user may state his own maximum permissible errors that satisfy his 
requirements [5-7]. 
The errors of indication for size measurements are usually verified measuring gauge blocks, 
alternatively step gauges, ball bars and ball plates. The tests of singular components of the 
geometrical errors with laser interferometers resp. material standards are expensive and remain 
usually for the manufacturers internal tests. These tests are not typically carried out by the user. 
Ball plate measurements may not only be used to test the errors of indication for size measurement, 
but also - using the distances of the ball centers - to calculate e.g. the errors of straightness and 
squareness [5, 6]. Therefore the maximum permissible error of indication for size measurement is 
limiting also these errors and may be used to derive approximated values for the errors of form, 
orientation and position. 
The maximum permissible error of indication for size measurements is usually stated in the form: 
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with A as a constant, and L/K as an length dependent component [7]. The constant factor represents 
the probing uncertainty of the surface of the material standard. The length dependent component 
expresses the geometrical errors of the CMM. 
The errors of indication for size measurement typically lie in the center between the two straight lines 
(figure 1), representing the maximum permissible errors. They occupy about the half range. In no case 
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they are distributed evenly across the entire range. Therefore a normal distribution of the errors may be 
assumed. 
 
 
 
 
 
Figure 1: 
Example for errors of indication of a 
CMM for size measurements MPEE 
with the maximum permissible error  
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Measuring the distance between two parallel planes, the length dependent component L/K immediately 
represents the uncertainty contribution of the geometrical error of the CMM. Its maximum permissible 
error is derived dividing the nominal value of the length L by the factor K. The nominal value L is valid 
for all measurands that may be interpreted as a length or distance. 
By contrast, the constant A may not immediately be used as a uncertainty contribution, because it is 
valid only for the two-point-measurement between even surfaces. Depending on the effect of local 
errors of form and the calculation of the mean value for several probing points, the uncertainty 
contribution of other measurings tasks may be larger or smaller respectively. For the distance of the 
centre points of two circles it is usually substantially smaller if the circles were measured with 
noticeably more than the mathematically required minimal number of points. The probing uncertainty in 
this case may be assessed by a series of repeated measurements, where every time other points of 
the surface are touched. Alternatively the uncertainty may be assessed from one measurement itself 
[8, 9]. 
 
 
Errors of orientation and form 
 
The geometrical errors of the CMM affect not only measurements of size, but also other 
measurements in different ways. An error of squareness e.g. may be determined approximately with a 
length measurement in a diagonal direction at an angle of 45° (figure 2). In the least favorable case the 
error of indicaton for size measurement ∆L is all alone caused by the error of squareness ∆LR. 
Because of Lcosα=l and cos²α=0,5 for α=45° it is twice as great as the error of indication for size 
measurement of the length l of the shorter side of the angle: 
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Figure 2: 
Error of indication for size 
measurement ∆L and error of 
squareness ∆LR 
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In the case of parallel straigth lines their inclination is measured in a common plane (figure 3). The 
same applies to rotational errors occuring in the direction of movement. The error may be determined 
approximately with a length measurement in a diagonal direction at an angle of 45°. In the least 
favorable case the error of indication for size measurement is all alone caused by the error of 
parallelism ∆LP or rotation respectively. On account of the same geometrical relationships between L, l 
and cos²α at α=45° the error ∆LP is twice as great as the error of indication for size measurement of 
the length l of the side of the angle: 
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For l is to apply the smaller value of the distance of the two geometrical features or the length of the 
tolerated feature, because the error in the case of very small dimensions must approach zero. 
 
 
 
 
Figure 3: 
Error of parallelism (inclination) 
resp. error of rotation;  
left side spatial situation, right 
side error of indication for size 
measurement ∆L and error of 
orientation ∆LP 
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The error of straigthness may be determined approximately with a length measurement in a diagonal 
direction at an angle of 45°. In the least favorable case the error of indication for size measurement is 
all alone caused by the error of straigthness ∆FG. Because of Lcosα=l/2 and cos²α=0,5 for α=45° it is 
just as great as the error of indication for size measurement of the length l of the straight line: 
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Figure 4: 
Error if indication for size 
measurement ∆L and error 
of straigthness ∆FG 

l
 

 
 
Other geometrical properties 
 
The above described procedure may be also applied for further geometrical properties to derive 
relationships to the error of indication for size measurement. Table 1 shows such approximation 
formulas to assess the uncertainty contributions of the geometrical errors of CMM. In each case, it’s a 
matter of maximum permissible errors limiting normally distributed deviations. The standard 
uncertainties are calculated dividing these values by the factor k=2 [2]. 
At the properties parallelism, squareness and inclination the datum is required to be longer than the 
tolerated feature. In the reverse case the maximum permissible error increases with the relation of 
these length. 
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Table 1: Maximum permissible geometrical errors of a CMM for various geometrical properties; with 
the factor K of the maximum permissible error of indication for size measurement 
MPEE=(A+L/K) µm (L in mm); the deviation of the angel ∆

)α  in radiant may be converted 
through multiplication with 180°/π into degrees, trough further multiplication with the factor 60 
into minutes etc. 

 

Geometrical property 
Maximum permissible 
error (in µm) Comment 

Length, distance, diameter 
and position (within a plane) K

L
L ≤∆  

L Nominal value of the property resp. 
theoretical value of the position 
tolerance 

Position (within the space) 221
lL

K
L +≤∆  

L Theoretical value of the position 
tolerance 

l Greatest nominal value of the 
geometric feature perpendicular to the 
theoretical value (diagonal) 

Concentricity and symmetry 
between points K

D
LK 2

≤∆  D Greatest nominal value of the diameter 
resp. width 

Coaxiality and symmetry 
(within a plane) 

2
2

4

1
L

D

K
LK +≤∆  

D Greatest nominal value for the 
diameter resp. width 

L Nominal value of the smaller length 

Parallelism (inclination and 
crosswise inclination) and 
rotation 

K

L
LP

2≤∆  
L Smaller nominal value for the length of 

the measured feature resp. the perpen-
dicular distance of the both features 
(the longer feature is the datum) 

Squareness 
K

L
LR

2≤∆  
L Nominal value of the length of the 

shorter side of the angel (the longer 
side of the angel is the datum) 

Inclination α≤∆ sin
2

K

L
LN  

L Nominal value of the side of the triangel 
opposite to the angel (the longer side of 
the angel is the datum) 

α Nominal value of the angel 

Deviation of angel (radiant) α≤α∆ 2
3

sin
10

2

K

)
 α Nominal value of the angel 

Straightness 
K

L
FG ≤∆  

l Nominal value of the length of the 
straight line 

Flatness 225
1

Ll
K

FE +≤∆  
l, L Nominal values of the shorter and the 

longer side of the plane 

Roundness 
4

26

K

D
FR ≤∆  D Nominal value of the diameter 

Zylindricity 22 10
4

261
LD

K
FZ +≤∆  

D Nominal value of the diameter 
L Nominal value of the length 

 
 
As shown in the figures 2 to 4, all geometrical errors of the CMM may affect the error of indication for 
size measurement. Using singular length measurements, it is not entirely clear if the error of indication 
is caused e.g. by scale, rotation, squareness or straightness errors. However, because all error 
components are taken into account with their full values, the standard uncertainties are expected more 
likely too large than too small. 
Due to the normally distributed errors of indication for size measurement, the standard uncertainty is in 
every case half as large as the maximum permissible errors according to table 1. Its application of 
course presupposes the regular verification of the CMM and the operating conditions to be always 
held. 
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The formulas in table 1 cover the major part of practical measuring tasks. For other geometric features 
like gears, threads or non-regular surfaces the following rules may be stated: 
1. An error of size is not greater than the length dependent component L/K. 
2. An error of orientation or position is maximally twice as large as the length dependent component 

L/K, if the datum is the longer resp. larger feature. 
3. An error of form is not greater than four times the length dependent component L/K. 
For L the largest spatial diagonal of the geometric feature resp. of the workpiece may be used. 
 
 
Effect of temperature 
 
When estimating the temperature influence on the measurand generally a homogenous temperature 
within the workpiece is presupposed. Then the temperatur has no effect on the errors of form and 
orientation, but only on absolute quantities like sizes and distances, with the position tolerance 
belonging to it, too. 
Independently of the geometry of the workpiece and the geometrical property, the errors caused by 
temperatur deviations always may be assessed using certain rules [10], if for the length L is set the 
longest expansion of the workpiece (spatial diagonal). If the geometrical property is referred to a 
geometric feature much smaller than the entire workpiece, then its spatial diagonal may be used. 
If the temperature within the workpiece is not homogenous, the temperature difference ∆t should be 
determined. It causes a difference of length ∆L∆t, that depends on the nominal value of length L and 
the expansion coefficient αw. The most unfavorable case is estimated using the length L of the spatial 
diagonal of the workpiece resp. the geometric feature: 

∆L∆t = L αw ∆t  (6) 

This deviation may be taken into account as an additional uncertainty component in measurements of 
form, orientation and position. Its effects on the geometric properties are the same as described above 
for ∆L. In this way also the influence of different temperatures within the workpiece may be estimated 
as an uncertainty component. 
 
 
Example: distance of holes 
 
At an workpiece the distance of two holes is to be measured (figure 5). The mathematical model may 
be formulated in the simplest way as the coordinate difference between x1 and x2: 

L = x2 - x1  (6) 

Additionally there are to be taken into account the geometrical error ∆L of the CMM and the 
temperature deviation ∆LT. The complete equation then is stated as: 

L = x2 - x1 − ∆L − ∆LT  (7) 

 
 
 
 
 
 
 
 
 
 
 
Figure 5: 
Measurement of the distance 
of the centres of the holes 
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The combined standard uncertainty derives from the standard uncertainties u(xi) of the influence 
quantities by the application of the propagation rule on equation (7): 

)()()()()( 22
2

2
1

2
TLuLuxuxuLu ∆+∆++=  (8) 

Presupposing a homogenous distribution of the positions of the probing poins on the entire 
circumference, there exists a simple relationship between the number of point and the expanded 
uncertainty U(x) of the centre point coordinates [8]. The uncertainty may be estimated by multiplying 
the standard deviation s of the mean circle with the corresponding factor from table 2. The standard 
uncertainty u(x) is as half as large, if the deviations are normally distributed. 
The standard deviation s contains the effects of the errors of geometry and of probing of the CMM 
within the area of the holes, of the number of probing points and that of the local deviations of form of 
the probe and of the surfaces. Especially the latter is very anvantagous, compared to other procedures 
[3, 4] that do not consider the local deviations of form at all. 
 
 
Table 2: Expanded uncertainties of the centre U(x) and the diameter U(D) of a mean circle as a 

functin of the number of points [8] with the following conditions: 
- Points with equal distances at the whole circumference 
- Random deviations of the probing points from the mean circle 
- Level of confidence P=95% 
- Standardized on the standard deviation s=1 

 
Number of points 

n 
Centre 
U(x)/s 

Diameter 
U(D)/s 

4 
6 
8 
12 
20 
50 
100 
200 
500 
1000 

8,98 
1,84 
1,29 
0,92 
0,67 
0,40 
0,28 
0,20 
0,12 
0,09 

12,71 
2,60 
1,82 
1,31 
0,94 
0,57 
0,40 
0,28 
0,18 
0,12 

 
 
The standard uncertainty u(∆LT) of the temperature effects may be estimated according to [10]. The 
expanded uncertainty of the distance of the holes for the level of confidence of 95% is calculated by 
multiplying the combined standard uncertainty u(L) with the coverage factor k=2 [2]. 
Table 3 shows the uncertainty budget completely relying on the method B of the Guide, without any 
repeated measurements according to the method A. In the equation the temperature component ∆LT is 
already substituted by the influence quantities of the workpiece and the scale (temperatures and 
expansion coefficients) [10]. 
Both circles were measured with n=50 points and standard deviations of s=5µm. According to table 2 
there are expanded uncertainties of U(x1)= U(x2)=2,0 µm. The CMM has the maximum permissible 
error if indication for size measurement given in figure 1. With L=280 µm the legth dependent 
component of the maximum permissible error of the distance is ∆L=2,8 µm. 
In the case of a number of probing points noticeably higher than the mathematically required minimal 
number, the deviations from the mean circle may contain systematic components, especially if the 
surface is characterized by local deviations of form. Then the standard deviation of the random 
components may be estimated, which yields to a smaller uncertainty of the centre points [8, 9]. 
Measuring both holes with the same probe, it has no influence on the distance. But, using different 
probes the influence of their centre points on the distance has to be taken into account. The 
uncertainties may be estimated with the standard deviation at probe system qualification [8]. 
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Measuring the diameters of the holes, the influence of the probe diameter must be considered in every 
case. The effect of handling and clamping the workpiece may be figured out by repeated 
measurements, but it should be negligibly small. 
 
 
Table 3: Budget of uncertainty of measurement for the distance of the hole centres from figure 5 

without probe effect; expansion factor k=2, level of confidence P=95% 
 
Function:  L = (x 2-x 1)*[1- α*(t w-20°C)+ αs*(t s-20°C)] + ∆L 
 
L Distance of the hole centres 
x1 Coordinate of the centre of hole 1 
x2 Coordinate of the centre of hole 2 
αw Expansion coeffizient of the workpiece (steel) 
t w Temperature of the workpiece 
αs  Expansion coeffizient of the scale (float glass) 
t s  Temperature of the scale 
∆L Geometrical error of the CMM 
 
Quan-                   Distri-  Permiss. Standard    Sensit.- Uncertainty 
tity   Unit    Value    bution   error    uncertain ty coeffiz. contribution 
 X i     [X i ]      x i                 ∆x i        u(x i )      c i          u i (L) 
--------------------------------------------------- ------------------------ 
 x 1   mm     97.0013  Normal    0.0020    0.0010    -1 .0000     0.0010 
 x 2   mm    377.0042  Normal    0.0020    0.0010     1 .0000     0.0010 
 αw µm/m/K   12.0     Rectang.  2.4       1.4       -0. 0003     0.0004 
 t w   °C     21.0     Rectang.  1.0       0.6       -0 .0034     0.0020 
 αs  µm/m/K    7.8     Rectang.  0.5       0.3        0 .0003     0.0001 
 t s    °C     21.0     Rectang.  1.0       0.6        0 .0022     0.0013 
 ∆L   µm      0.0     Normal    2.8       1.4        0.0010     0.0014 
--------------------------------------------------- ------------------------ 
 L   mm     280.0017                                           0.0031 
 
Result of measurement and expanded uncertainty:    L = 280.0017 ± 0.0063 
 
 
Conclusions 
 
The geometrical errors of coordinate measuring machines affect the errors of indication for size 
measurements in various ways. For a lot of geometrical properties these relationships may be used to 
estimate their maximum permissible errors from the maximum permissible error of indication for size 
measurements. The uncertainty of coordinate measurements in this way may be completely assessed 
with minimal expense. 
The simplicity of the method implies a possible over-estimation of the uncertainty, which may be 
tolerated for the most cases. The uncertainty may be assessed to small, if the mathematical model of 
the measurement is incomplete or wrong. Here a careful analysis of the problem is essential. 
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